
HEX 2F - Team 47
Project Title: JUNK

https://github.com/fernandezmatthew/Hex2FProject
Matthew Fernandez, Yifan Zhu, Phillip Vanderlaat,

Anthony Long

https://github.com/fernandezmatthew/Hex2FProject


Table of Contents
Section 1:  Project Description - pg. 3

Section 2:  Code Management - pg. 5

Section 3:  Technical Details - pg. 5

Section 4: Risk Management - pg. 6

References - pg. 8



Project Description
- Project Description

- We built a local multiplayer, co-op game. The objective of the game is to collect
all the trash in each level in the quickest amount of time. There are two players,
each having a unique game experience, who need to work together to solve the
puzzles that obstruct them from collecting all the trash.

- Our game is for young people who may not be aware of the growing problem of
climate change and it will improve their awareness on this topic.

- How solution addressed challenged statement
- Our game is meant for young people who may not be aware of the growing

problem of climate change, our project is a co-op game that improves awareness
of the importance of environmental conservation through the use of theming. Our
co-op game will be focused around picking up trash and solving puzzles that
incorporate environmental concerns.

- Features and Functionality
- There are two character types, a land and a water character:

- The land player moves and jumps fast on land, but it cannot swim
underwater the water (it is always forced to stay afloat and swim on the
top of the water).

- The water player swims fast in the water and can jump high in the air from
a submerged state. If it is on land, it hobbles around and cannot jump
very high.

- Each level contains puzzles such as obstacles / hazards, manipulatable triggers,
and a unique game environment for both characters.

- Users must sign in to record their state information
- Level high scores are recorded in a database and can be improved upon later.

System Models:

The Architectural pattern
- Our game is a monolithic application with component-based functionality

- Not Microservices
- Not Client-Server
- Local two player co-op system
- Layered
- We will be developing the Presentation and Functionality Layers
- Unity handles all the backend layering



Use Case Model



Code Management

- Code Management
- Our project, including our code, is remotely stored

using Github. We did all of our coding using Unity’s
built-in integration with Visual Studio. These gave us
access to an intellisense system capable of
understanding Unity’s many functions.

- Test Plan
- Our plan for testing involved building functionality

and testing as we go.

- We manually tested many things along the way using Unity’s logging system.
Below is a list of tests that we created along the way and used to keep our
project running smoothly.

- Static Code Analysis and Report
- Unfortunately, Unity projects are not well suited to the popular static code

analysis tools currently available. We were unable to perform a static code
analysis + report for our project.



Technical Details
- Installation Instructions

- Developer installation instructions
1. Clone the repository
2. Download the Unity-Firebase SDK and import the package as a “custom

asset”
3. Import the google-services.json key from the firebase dashboard

- User installation instructions
1. Only works on windows platform
2. Download the .exe and play!

- Login and Access Credentials
- Users must log or register upon starting the game
- The login and database functionality is implemented using FireBase

- API Keys
- The login and database functionality is implemented using FireBase which

utilizes a json key to authenticate our program
- In order for our game to communicate with our database, we registered

our game with the firebase project and ensure the firebase project’s
JSON key is present in the game’s project directory



Risk Management
- Risk Management Plan

- Unity handles OS resources, prevents crashes, and developer logs
- Safe distribution to prevent impersonation by hackers
- Project management Feasible goals and timeline

- Software Quality Attributes
- Availability: Because our game is quite simple, it is able to achieve the intended

purpose with no failure. There are no game breaking bugs.

- Performance: Our game loads quickly and is able to communicate with the
database seamlessly. Our game’s performance is very strong.

- Testability: Video games can be hard to test (aside from manual testing). We
were only able to perform integration and end-to-end tests through manually
playing the game.

- Security: All security aspects involved in our game are in the hands of either
Unity or Google.

- All resource management is handled by Unity, so we as developers have
little control over this aspect of our game’s security

- All login functionality and user data storage is handled by Google’s
Firebase product, so we have little control over the user’s data security in
this regard



References

- Our game was inspired by Fireboy & Watergirl: Elements, a co-op online game.
- https://www.coolmathgames.com/0-fireboy-and-water-girl-in-the-forest-temple

- Presentation icons by flaticon.com

https://www.coolmathgames.com/0-fireboy-and-water-girl-in-the-forest-temple

