HEX 2F - Team 47
Project Title: JUNK

https://qithub.com/fernandezmatthew/Hex2F Project

Matthew Fernandez, Yifan Zhu, Phillip Vanderlaat,
Anthony Long

https://github.com/fernandezmatthew/Hex2FProject

Table of Contents

Section 1: Project Description - pg. 3
Section 2: Code Management - pg. 5
Section 3: Technical Details - pg. 5
Section 4: Risk Management - pg. 6

References - pg. 8

Ll

Project Description

- Project Description

We built a local multiplayer, co-op game. The objective of the game is to collect
all the trash in each level in the quickest amount of time. There are two players,
each having a unique game experience, who need to work together to solve the
puzzles that obstruct them from collecting all the trash.

Our game is for young people who may not be aware of the growing problem of
climate change and it will improve their awareness on this topic.

- How solution addressed challenged statement

Our game is meant for young people who may not be aware of the growing
problem of climate change, our project is a co-op game that improves awareness
of the importance of environmental conservation through the use of theming. Our
co-op game will be focused around picking up trash and solving puzzles that
incorporate environmental concerns.

- Features and Functionality

There are two character types, a land and a water character:

- The land player moves and jumps fast on land, but it cannot swim
underwater the water (it is always forced to stay afloat and swim on the
top of the water).

- The water player swims fast in the water and can jump high in the air from
a submerged state. If it is on land, it hobbles around and cannot jump
very high.

Each level contains puzzles such as obstacles / hazards, manipulatable triggers,
and a unique game environment for both characters.

Users must sign in to record their state information

Level high scores are recorded in a database and can be improved upon later.

System Models:

The Architectural pattern

- Our game is a monolithic application with component-based functionality

Not Microservices

Not Client-Server

Local two player co-op system

Layered

We will be developing the Presentation and Functionality Layers
Unity handles all the backend layering

Layered System Context Model

P
h Player Controls
Presentation Layer » Menu
) Level Select
&
™ ' A’
Scene Layer » Object Integration
J
Y . r
" (~ Control Mappings)
+| Movement Logic
Asset Layer Level Logic
T J \ Artwork J
! s '
. o Game Engine
Unity Layer “| Fundamental Logic
J \, ,
Use Case Model
Log out
Demo
Level

Register

Level

\ Main Menu —» Select
Player \ Level 1

Login

Code Management

Code Management

- Our project, including our code, is remotely stored
using Github. We did all of our coding using Unity’s
built-in integration with Visual Studio. These gave us
access to an intellisense system capable of
understanding Unity’s many functions.
- Test Plan
- Our plan for testing involved building functionality
and testing as we go.
| TEST CASE DESCRIPTION PRECONDITION TEST STEPS TEST DATA EXPECTED RESULT POSTCONDITION ACTUAL RESULT. STATUS.
Check that the player is The "is grounded” message should The "is Grounded"” message was
considered to be grounded The character has a character controller Walk around and jump with the player. continuously be output whenever The player is allowed to move output as | walked around,
whenever he visually looks component and a playerStateMachine Use a Debug command to continuously | Check the debug window to see when the player is walking on the surface, around the level following the but was not output whenever | was
grounded. component. output when the player is grounded. "is Grounded" is output. but should NOT be output otherwise. intended physics and logic. jumping or falling. Pass
Check that the player is We should see our state's change
considered to be in the The character has a character controller Walk around and jump with the player. according to the movements we The player is allowed to move The current state that was output
move state that they component and a playerStateMachine Use a Debug command to continuously | Check the debug window to see which state make with our character. And we around the level following the always matched the movement logic
should be in. component. output the player's current state. is being output. should always see falling after jumping. intended physics and logic. for the state i was currently in. Pass
A Firebase project was set up and
User Story = Ul synced with the Unity engine
Check that the game can Also, the google-services.json file for the |Add the google-services.json file for the
connect to the Firebase firebase project is present in the directory. |firebase project and then start up Unity |Check the debug window to see if an error is The gameplay continues to run | The gameplay continued to run
API |and run the game. |shown. No error shown in the debugger. smoothly smoathly Pass
User Story = Ul
Check that a user with The fireBaseConnectionCheck test passed.
correct credentials can Enter Username. Username: pvanderlaat@gmail.com
successfully login to Also, a user has already registered for Enter Password Password: 123456 Successful login User is transferred to the game |User was transferred to the game
our game an account on our game. Click Login button main menu. main menu. Pass
User Story = Ul
Check that a user with
correct credentials can Enter Username. Username: nogood@gmail.com
successfully login to Enter Password. Password: 123456 Unsuccessful login User gets thrown an error and User was thrown an error and
our game The fireBaseConnectionCheck test passed. | Click Login button. remains an the login sereen. remained on the login screen. Pass
Check that both the players
should be able to control The game must be able to run without
their characters, all keyboard | bugging cut. The game must have proper Player characters moved
bindings should work. feedback to indicate the player is doing Press all the binded keys to check the Check the player coordinates in Unity to see Player characters should move around properly with designated |Both player characters moved
|something. |movement of players |if they are moving. around with designated keys. keys. properly to the target position. Pass
Check that the player is Collectibles and players have colliders
able to pick up the Collectibles use the "CollectiblePickup” The gameplay continues to run
script and players are tagged as "Player” | Move the player into the collectible Check if the collectible disappears The collectible disappears smoothly The collectible disappears Pass
Unity loads correct scenes after interacting
with buttons. The backgrounds should Unity loads correct scenes after
Check if the Ul and menu scend The game must be able to run without Start the game from main menu, then | Unity will load correspanding scene as scripted |load correctly that shows post apocalyptic interacting with buttons. The scenes.
properly crashing. interact with buttons. in build settings. background. The next scenes are loaded all work as intended. Pass

- We manually tested many things along the way using Unity’s logging system.
Below is a list of tests that we created along the way and used to keep our
project running smoothly.

Static Code Analysis and Report
- Unfortunately, Unity projects are not well suited to the popular static code

analysis tools currently available. We were unable to perform a static code

analysis + report for our project.

Technical Details
- Installation Instructions
- Developer installation instructions
1. Clone the repository
2. Download the Unity-Firebase SDK and import the package as a “custom
asset”
3. Import the google-services.json key from the firebase dashboard
- User installation instructions
1. Only works on windows platform
2. Download the .exe and play!

- Login and Access Credentials
- Users must log or register upon starting the game
- The login and database functionality is implemented using FireBase

- APl Keys
- The login and database functionality is implemented using FireBase which
utilizes a json key to authenticate our program
- In order for our game to communicate with our database, we registered
our game with the firebase project and ensure the firebase project’s
JSON key is present in the game’s project directory

Risk Management

Risk Management Plan

Unity handles OS resources, prevents crashes, and developer logs
Safe distribution to prevent impersonation by hackers
Project management Feasible goals and timeline

Software Quality Attributes

Availability: Because our game is quite simple, it is able to achieve the intended
purpose with no failure. There are no game breaking bugs.

Performance: Our game loads quickly and is able to communicate with the
database seamlessly. Our game’s performance is very strong.

Testability: Video games can be hard to test (aside from manual testing). We
were only able to perform integration and end-to-end tests through manually
playing the game.

Security: All security aspects involved in our game are in the hands of either
Unity or Google.
- All resource management is handled by Unity, so we as developers have
little control over this aspect of our game’s security
- Alllogin functionality and user data storage is handled by Google’s
Firebase product, so we have little control over the user’s data security in
this regard

References

Our game was inspired by Fireboy & Waterglrl Elements, a co- op online game.

Presentatlon icons by flaticon.com

https://www.coolmathgames.com/0-fireboy-and-water-girl-in-the-forest-temple

